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Algorithms for converting between osculating and mean orbit
elements are currently limited to computing the contribution due to
the second zonal harmonic (J,). This paper presents an improved
conversion algorithm that includes the effects of all zonal, sectorial
and tesseral harmonics, second order J,, and third body
gravitational perturbations. Mean elements are useful for
preliminary orbit and maneuver design; however, for more precise
work, such as groundtrack targeting, osculating elements are
required. This improved corversion algorithm was developed to
meet accuracy requirements for the TOPEX/Poseidon mission; but,
additional use can be considered for satellites orbiting planets like
Venus that do not have a dominant J,. Results are presented from
tests performed using the new algorithm with the planned
TOPEX/Poseidon Earth orbit as well as the Mars Observer and
proposed circular Magellan (Venus) orbits.

INTRODUCTION

Mean orbit elements are advantageous for trajectory design and maneuver planning
since they can be propagated very quickly. Unfortunately, since the periodic behavior
has been removed, mean elements do not describe the exact orbit at any given time.
Using osculating elements gives an exact description of the orbit always but computation
costs are significantly increased due to the numerical integration procedure required for
propagation. To exploit the advantages of each, an accurate conversion between the two

Existing algorithms for converting between osculating and mean orbit elements are

*Member of Technical Staff and Member AIAA at the Jet Propulsion Laboratory, California Institute of
Technology, 4800 Oak Grove Drive Pasadena, California 91109, (818) 354-0425



limited to computing the contribution of central body flattening. More precisely,
accounting for the second zonal harmonic (J,) of a spherical harmonic expansion for the
shape of the central body. Several algorithms can be found in the literature for
performing this task!-5. In this paper, expressions are presented for computing all first
order, periodic central body aspherical and third body gravitational perturbations as well
as the second order aspherical J, term (J22). Also, the expressions are used to compute
mean elements from osculating Earth, Venus and Mars satellite trajectories and the
results are plotted and discussed.

For oblate planets like the Earth and Mars the J, aspherical perturbations dominate
all other periodic effects on orbiting satellites. But, for nearly spherical planets like
Venus the J, perturbations are of the same magnitude as some additional aspherical
(zonal, sectorial and tesseral) terms.

The J, only conversions account for "short period" perturbations. In this paper, the
term "short period” refers to perturbations with frequencies greater than once per satellite
orbital revolution. When converting from osculating to mean orbit elements all periodic
terms must be computed to obtain strictly mean elements. While the dominant
perturbations in the satellite semi-major axis are due to the short period J, terms, longer
period perturbations from the sectorial and tesseral harmonics yield significant effects in
other elements. The term "medium period” is used to describe the perturbations with
frequencies less than short period but greater than one revolution of the central body.
Even longer periodic terms exist and can be computed with the expressions presented in

 this paper; however, only short and medium period aspherical terms are used for the test
results presented.

Periodic perturbations are also caused by third bodies. Of course, the mass and
relative geometry of the bodies determines the magnitude; but, for low Earth orbiters the
sun and moon perturbations in semi-major axis are about the same size as the Jzz effects.
Short period terms effect the satellite semi-major axis and longer period terms
commensurate with the orbital periods of the third bodies contribute to variations in the
satellite inclination. The longer period perturbations do not conform to the previous
definition of medium period terms so they will simply be called "low frequency third
body perturbations" in this paper. :

APPLICATIONS

One motivations for this work is to determine a method for converting between
osculating and mean orbit elements for the TOPEX/Poseidon Navigation Team. This



team will perform preliminary maneuver design by propagating a set of mean elements
over intervals of 100-200 daysS. The mean semi-major axis, eccentricity, and inclination
are required to be known to 1 meter, 10-° and 0.001 degrees respectively. A frozen orbit
(i.e., near zero mean rate in eccentricity and argument of periapsis) has been chosen for
TOPEX/Poseidon’. From this requirement the mean argument of periapsis also must be
known to +10 degrees.

The expressions presented in this paper are derived from previous work related to
averaged orbit element propagation8-12, Modifications to allow for normalized
gravitational field coefficients and a simple summation of terms at a given time yields the
periodic perturbations required in the conversion between osculating and mean orbit
elements. Currently, the expressions are best suited for near circular orbits (i.e., e < 0.1)
and no attempt has been made to reformulate thern to eliminate singularities.

MATHEMATICAL DESCRIPTION
Expressions for computing the first order periodic aspherical and third body

gravitational perturbations at a given time are presented in this section. Symbolically, the
relationship between osculating and mean elements can be written as:

O mean = %osculating — ACGM) — Aax(t)

where: o represents any orbit element at a particular epoch (t)
Aa sum of all periodic aspherical central body perturbations at (t)
Aas sum of all periodic third body perturbations at (t)

In the aspherical and third body perturbation expressions, classical orbit elements of a
satellite orbit are used. They are defined as:

semi-major axis

eccentricity

= inclination to central body equatorial plane
= Longitude of ascending node

argument of periapsis

mean anomaly

"
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Additionally, the mean motion and gravitational parameter are defined as:

mean motion

central body gravitational parameter
= n243
=n‘a

n

In the expressions for the third body perturbations a superscript asterisk (e.g., 4#) is used
to distinguish third body variables.

Aspherical Gravity

Two formulations are combined to compute the periodic aspherical gravitational
terms. The first method uses a time transformation and semi-equinoctial elements!®11 to
account for the J, and J,? effects. This formulation is valid for all eccentric orbits and
is free from singularities. The second method uses a spherical harmonic expansion of the
central body potential to compute the terms for any degree and order of gravity
harmonic®. The total aspherical perturbation is determined by computing the sum of all
periodic terms of the two methods at a given time.

The formulation of the J, and J,? effects is fully documented in the reference
above and will not be repeated here. For the higher degree zonal, sectorial and tesseral
terms the complete details are given below.

Starting with the normalized central body potential function®:

d Ha, L& iy
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where:

a, = central body equatorial radius
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The variable &is the angle along central body true equator-of-date between the prime
meridian and vernal equinox at epoch.

Next, the time rates of change of classical orbit elements are obtained from
Lagrange's planetary equations:
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These terms taken alone give the mean secular rates due to an aspherical central body.
The values can be computed by evaluating equations (6) for combinations of £m,p,q that
give zero coefficients to w,M,(€2-8) in equation (5).

Now, the partial derivatives of the disturbing functions with respect to the classical
orbit elements are:
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Taking the semi-major axis as an example, the periodic perturbations can be
computed by integrating over one cycle of y.

with:

= (E2p)@ + (E2p+@)M + m(2-6)

(10)

(11)

(12)

(13)

(14)

(15)

Substituting equations (6) into (14) yields the sum of all periodic perturbations in each

orbit element.
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The expression for mean anomaly does not include the central body term and is
augmented with a second order correction. The second order correction? is added to
account for changes in the mean motion arising from perturbations in the semi-major
axis.

Third B ravi
Analogous to the aspherical gravity the third body periodic gravitational terms are
derived from a disturbing function. The disturbing function for this work was obtained

from Kaula8. A minor modification was introduced to make use of the normalized
inclination function. The new third body disturbing function is:
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Again like aspherical gravity, the partials of the disturbing function with respect to the



orbit elements are computed!2:
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Substituting equations (19) into (6) and integrating, the periodic third body expressions
are produced:
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TEST RESULTS

Tests of the above expressions were performed by starting with osculating
trajectories that only included central and third body perturbations. No atmospheric drag
or solar radiation pressure forces were introduced. The osculating trajectories were
generated with the initial conditions given in Table 1. The gravity field size and third
body perturbations are shown in Table 2.

Table 1
INITIAL CONDITIONS
(Epoch = 22 June 1992)

TOPEX/POSEIDON MAGELLAN  MARS OBSERVER
a (km) 7720.3855 6376.0000 3766.1588
e 3.43x104 3.07x102 4,0x1073
i (deg) 66.049 - 85.500 92.869
Q(deg) 116.5500 0.0000 38.3372
@ (deg) 329.5517 90.0000 270.0000
M (deg) 13.5615 0.00000 0.0000
Table 2
PERTURBATION MODELS

TOPEX/POSEIDON MAGELLAN MARS OBSERVER
Central Body Gravity Field Size 17x17 10,10 18,18
Third Body Sun,Moon Sun Sun

Time series of the osculating and converted mean elements were generated and are
shown in Figs. 1-9. In the plots, the legend "Mean(J2)" implies that only the J,
perturbations have been subtracted from the osculating element. Likewise the
abbreviations "CS" (all aspherical central body terms except J,), "J2**2", (second order
J,), and "3B" (third body terms) are used.

Semi-Major Axis (g)

Figs. 1-3 show the progressive removal of periodic perturbations from the
osculating semi-major axis. Only short period perturbations (i.e., terms with £2p+g=0)
are removed. For TOPEX/Poseidon, Figs. 1a-1d, remeving aspherical and third body
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perturbations yields a mean semi-major axis with an uncertainty of *1 meter. In Figs. 2a-
2d (Venus orbiter) the J, only conversion gives a mean value that is as uncertain as the
osculating. This verifies the importance of the conversion with aspherical terms beyond
J, for nearly spherical planets. For Magellan orbit tested a mean semi-major axis of £15
meters is possible when the complete first order aspherical gravitational effects are
included. For Mars Observer the conversions do not perforrh as well. In Figs. 3a-3d the
mean value of the semi-major axis has an uncertainty of +50-60 meters. The results are
worse due to the first order approximation in aspherical gravity field coefficients beyond
J,. That is, the Mars J,2, C,,2, S,,2, etc. have been neglected. Fig. 3¢ indicates that the
perturbations due to J 22 do not dominant among the neglected terms and thus a more
complete expansion is required to resolve the uncertainty.

For all three satellites the sun penurbaﬁons are smaller than the uncertainty
produced by the aspherical conversions. But, for TOPEX/Poseidon the Moon
perturbations contribute about 50 centimeters.

Eccentricity (e)

The mean eccentricities derived from the aspherical gravitational terms are shown
in Figs. 4a-4f. The third body perturbations in eccentricity are also shown but cannot be
distinguished since they produce perturbations of less than 107 for all three satellites. In
Figs. 4b,4d and 4f medium period perturbations have been removed. These are computed
from terms with £2p+q=0 and m=0. The large difference in Fig. 4d is due to a medium
period aspherical gravity term caused by the slow rotation of Venus. The periodic nature
is not obvious since medium period frequencies for Venus can be as long as 243 Earth
days.

Inclination (i}

The conversion from osculating to mean inclination involves computing short
period aspherical terms as well as perturbations commensurate with the rotation period of
the central body and the orbital motion of any third bodies. Figs. 5a-5f primarily show
the effects of the short period aspherical terms. The medium period aspherical effects are
also easily seen in Figs. 5b, Se and 5f. The slow rotation of Venus is again the reason the
periodic terms in Fig. 5d are not seen.

Low frequency third body perturbations can be seen in Fig. 5b; but, more dramatic
views are shown in Figs 6a-6f. In particular, Fig. 6b shows the low frequency lunar and
solar terms at about 11 and 60 days respectively. The medium period aspherical gravity
terms dominate for Venus and Mars thus masking, in Figs. 6d and 6f, the third body
perturbations.

13



Longitude of Ascending Node ()

Due to the secular nature of the longitude of the ascending node it is difficult to
examine graphically the difference between the mean and osculating values. Figs. 7a-7f
show only the conversions due to aspherical gravity since the third body perturbations are
small. The plots are limited to a single orbit and the differences are included to remove
the secular effects.

Aspherical gravity induces a torque on satellite orbits that in turn gives rise to a
precession of £2. This precession is the basis for the secular rate. For Venus, the secular
rate is very small as can be seen in Figs. 7c and 7d. After removing the aspherical gravity
perturbations the mean value of (2 is determined with a constant mean secular rate.

Argument of Periapsis (@)

Again this element has secular variations. Similar to eccentricity, the argument of
periapsis has only medium period variations due to aspherical effects past J,. It is also
practically insensitive to third body perturbations. Figs. 8a-8f show the osculating and
mean values over one day. ‘

Mean Anomaly (M)
This element changes very rapidly due to the central body term. The short period

variations are primarily dominated by the J, perturbations. Figs. 9a-9f show one orbital
revolution of the osculating and mean values with their differences.

CONCLUSIONS

An improved algorithm for converting between osculating and mean orbit elements
has been developed and the expressions provided in this paper. A summary of the
uncertainties in the mean elements determined with the new expressions is given in
Table 3.

The primary goal of determining the TOPEX/Poseidon mean semi-major axis, v
eccentricity, and inclination to 1 meter, 10-5 and 0.001 degrees respectively has been
achieved. The additional requirement on the mean argument of periapsis, £10 degrees,
was also meet. '
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Table 3
MEAN ELEMENTS AND UNCERTAINTIES
(Epoch = 22 June 1992)

: TOPEX/POSEIDON MAGELLAN MARS OBSERVER
a (km) 7714.4278 (0.001) 6376.020 (0.015) 3774.807 (0.050)
e 9.5x10°° (2x10%)  2.473x10°2 (2x10°) 7.14x103  (3x10%)
i(deg) 66.039  (0.002) 85302  (0.002) 92.898 (0.002)
£ (deg) 116.5574 (10 0.0003 (10°%) 383372 (109

 w(deg) 81.4 %) 98.8 0.2) 270.6 4)

M(deg)  253.1300 (103) 0.0004  (2x10%)  0.0000 (107
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